
 1

Developing Buddy: Towards greater dependability and maintainability in

meta-search

Naresh Kumar Agarwal, Danny C.C. Poo and Dominick M.T. Leo

School of Computing, National University of Singapore

3 Science Drive 2, Singapore 117543

E-mail: {naresh, dpoo, dominick_leo}@comp.nus.edu.sg

Abstract

Most meta-search engines use web scraping as an

ad-hoc method to extract results from the output

display of various search engine sources. However, a

search engine may cease operation, merge with other

engines or its display format may change. A

dependable meta-search engine must, thus, adapt to

display changes in search engine sources and be

maintainable even by people with low programming
skills. This paper describes the design and

development of Buddy, a meta-search engine that is

able to help web users search more effectively into

multiple search engine sources. It allows integration of

a new search source with minimum complexity and

programming knowledge, leading to greater

dependability and maintainability. Search results are

aggregated from multiple sources to remove duplicate

and sponsored links and to give the most relevant

results each time. Buddy also allows query refinement

and saving of search results locally in user computers
or remotely in emails.

Keywords. Meta-search engine, Information Retrieval,

Web scraping in Java

1. Introduction

The World Wide Web may be considered the

largest database in the world, with its huge collection

of data covering every part of our lives. Each day, each

second, a humongous number of people search the

Web for information and data of their interest, such as

news, word documents, research papers, pictures,

music and video. The sole aim of these searchers is to

find answers to their queries.

However, they may not be able to find all the best

answers in a single search engine. E.g. searching
Google (www.google.com) alone is still considered

insufficient even though it seems to have the largest

repository of web pages [1]. This is because there is

very little overlap in the databases of different search

engines [2]. Since the top results ranked by different

search engines are very different from each other, Web

searchers potentially miss relevant results by using

only one search engine. Here comes the need and

relevance of meta-search engines that have the

underlying philosophy that “having many heads is

better than one” i.e. instead of searching into only one
search engine, it may be worthwhile to get another

opinion from other search engines. As searching

manually into individual search engines is time-

consuming and inefficient, meta-search engines (see

[3] for a list of meta-search engines) allow searching

into various search engines simultaneously.

1.1 Issues with Meta-Search Engines and their

development

Unfortunately, meta-search engines today are too

ad-laden [4]. They are becoming “meta-yellow pages”

where searchers query paid listings and get

advertisements in their search results. Searchers are

forced to sieve through irrelevant sponsored sites

ranked among the search results.

There are two ways in which meta-search engines

are able to search into other search engines: 1) Using
the APIs provided by search engines e.g. Google’s

Java-APIs. However, this method is not feasible when

searching into many search engines. To connect to ten

search engines that use different APIs, such a method

will require learning how to apply ten different APIs.

This will makes the connection to a search engine’s

database a tedious task and it would be difficult to

maintain the system. Moreover, unlike Google, not

many search engines are willing to share their APIs

with the public. 2) To overcome this limitation, a web

scraping technique [5] can be used to extract the results
from the output display of various search engines. This

allows connecting and extracting data from many

search engine sources without having to learn new

APIs.

 2

This leads us to the most important issue, which is

the focus of this paper – dependability and

maintainability. The output display of search engines

may change and cause extraction of results using web

scraping method to fail. New search engines can

emerge anytime in the World Wide Web. Existing
search engines may cease to exist or merge with

another engine. A dependable meta-search engine

must, thus, adapt to display changes in search engine

sources and be maintainable even by people with low

programming skills.

In this paper, we describe the design and

development of Buddy, a meta-search engine

developed at the School of Computing, National

University of Singapore and accessible at

http://buddy.redirectme.net

The remainder of the paper is organized as follows.

In Section 2, we briefly describe the features of Buddy
that lead to greater maintainability and dependability.

Target users and guiding objectives are also discussed.

Section 3 discusses the system design considerations.

In Section 4, we see the system architecture of Buddy.

Section 5 highlights the experimental results on

evaluating the system. Section 6 concludes the paper

by sharing the lessons learnt and possible future

enhancements.

Let us now look at the Buddy Meta-search Engine.

2. The Buddy Meta-search Engine

Figure 1 shows a snapshot of the Buddy Meta-

search Engine. Buddy extracts results directly from

search engines chosen by the user. No paid links are

added into the final merged results. Sponsored links

from the source search engines are actually omitted.

The system thus minimizes the occurrence of
sponsored links in search results, while maximizing

relevant links.

Figure 1 Snap-shot of Buddy (accessible at
http://buddy.redirectme.net)

Buddy has been designed for dependability and

maintainability – it can easily connect or disconnect

to/from search engines. At the same time, it can adapt

to display output changes in the search engine sources.

In Buddy, adding a new source search engine does not
require learning its APIs. Any changes to the output

display of the source search engines will require

minimal modification. The web scraping technique in

Buddy makes use of existing Java’s Regular

Expression and Pattern matching capability [6]. If the

output display of source search engines changes, the

system administrator just needs to modify the Regular

Expression that governs the web scraping structure.

This means that there is no need to change the

underlying data structures of the system. Maintaining

the system will also require little programming

knowledge. There is no need to recode the system or
web scraping methods if changes occur to the source

search engines. Modifications are done in a declarative

approach (see Section 3.1).

Understanding searcher needs is important if we are

to attract users to use Buddy. Besides being able to

extract results from search engines, Buddy can also

extract results from sites such as Dictionary.com

(www.dictionary.com) to provide spelling suggestions

for queries with spelling errors1.

Buddy can extract query refinement suggestions

from sites like Ask.com (www.ask.com) and Yahoo
(www.yahoo.com) that provide query refinements

together with the searched results. This shows the

flexible web scraping method used in our proposed

system.

Buddy also enables searchers to save their results

locally in their computers or to send their results to

their email so that they can access the results in future.

2.1. Target Users

Buddy, though a general-purpose meta-search

engine, has been developed keeping in mind, the

educational needs of students and teachers in

Singapore. The education system in Singapore

encourages schools to use materials outside their

textbooks, including project-based learning. Earlier,

students used encyclopedias to gather this extra

information. With the technology available today,

students have switched to gathering information from

the World Wide Web. Search engines have thus

become useful tools for students to do their learning or
to gather data for their projects. Teachers can also turn

1
 There are many misspelt words that Google cannot detect e.g.

arrowplane, arrowdynamic, brase, buule, colar, canntin, diform,

doubl, etc.

http://buddy.redirectme.net/
http://buddy.redirectme.net/

 3

to search engines to gather useful teaching materials.

Buddy primarily aims to help such students and

teachers in their needs by providing customizable

mechanisms to search from specific sources.

Agarwal and Poo [7] discuss classifying a typical

Internet searcher into one of 4 searcher modes (or
categories) – 1) novice2, 2) data gatherer, 3) location

searcher and 4) focused searcher. In the novice mode,

the searcher knows nothing about of the domain under

search. As data gatherer, he/she is familiar with the

domain or subjects under search. A data gatherer just

needs information on the topic he/she is knowledgeable

about. A location searcher just needs to locate

information previously encountered. The searcher in

focused searching mode needs a specific answer to a

specific question.

As a novice, it is sometimes hard to decide which

results are relevant and which are not. A novice is also
unsure of what he/she is searching for. The web-based

interface of Buddy has to provide an intuitive way of

selecting the search engines. Buddy has separated

search engine choices into categories, namely –

Science, Math, Geography, History, Arts and General

Search. This will helps students to better focus their

search into specific domains. Buddy also provides

query refinements and spelling suggestions for

searchers. This is especially useful when the searcher is

in a novice mode. Unlike existing meta-search engines,

Buddy does not include sponsored links in its results.
As a data gather, a searcher’s aim is to gather

information. Searching one search engine is not

enough. Searching many search engines manually is

inefficient. Buddy is able to search multiple search

engines concurrently and return merged results without

duplicates or sponsored links. Hence a data gather can

select the specific domains he/she wants to search into.

As a location searcher, a searcher wishes to find the

results that he/she came across previously. Since

Buddy provides utilities to let searchers save or email

their results, these can be accessed again locally in user

computers or remotely in their email account.
A focused searcher wishes to be able to query about

a specific question. Buddy supports Boolean searching.

This helps a focused searcher to obtain better results.

As students are still in a stage of learning, we

expect more students to fall under the modes of novice

and data gatherer, especially when searching for

education-related materials. We would expect teachers

to be in the data gatherer, location searcher, or

focused searcher modes most of the times. Once the

searchers get their answers, they might want to share

2
 ‘Novice’ was termed ‘learner’ and ‘location searcher’ was termed

‘location seeker’ in [7]. The terms have subsequently been revised to

remove ambiguity.

the results with other students or teachers. This is

where the save-results utility provided by Buddy

comes in handy.

2.2. Objectives guiding Buddy

To summarize, the objectives guiding the

development of Buddy are twofold:

1. Dependability and Maintainability. This is the

most important objective. Connecting to source

search engines should be easy. Buddy should be

adaptable to changes in search engine sources.

Additional search engines could easily be added

into Buddy without recoding the data structures
and methods. Any changes to the source search

engines should require minimal modifications to

the system, keeping the underlying data structures

untouched. Modification should be done in a

declarative approach. People maintaining the

system need not be proficient in their

programming skills.

2. To be an appropriate Learning tool (the name

‘Buddy’ reflects this objective). Buddy must cater

to the needs of a searcher in any of the 4 searcher

modes described in Section 2.1. Besides being
able to search into multiple search engine

databases, Buddy must be able to provide tools for

disambiguation, such as query refinement and

spelling suggestions so as to guide searchers in the

novice mode. Buddy must also allow searchers

(data gatherers and focused searchers) to search

into specific directories and subjects. Buddy must

enable use of Boolean expressions to make queries

specific for searchers (focused searchers). Buddy

must enable searchers (location searchers) to keep

track of the searches they had done and to retrieve
their previous search results. Finally, the system

must minimize the number of sponsored links in

the results.

3. System Design Considerations

Buddy was implemented using Java Development
Kit (JDK) version 1.4.2 and Sun System Application

Server 8. Java codes were written with EditPlus2 text

editor. The web-based user interface (GUI) was

implemented in JSP and OpenLaszlo

(www.openlaszlo.org), the open-source platform for

rich Internet applications. JSP files were written with

Macromedia Dreamweaver 4. Some of the decisions

and considerations in designing Buddy are:

http://www.openlaszlo.org/

 4

 Declarative Approach. Properties of the data

structures of source search engines are described

in script files, contributing to maintainability. The

integration of new search engine is simple.

 Web scraping method. There are a few open-
source parsing tools [5][8] However, these are

usually complex and incur a steep learning curve.

Hence, we defined a simple web scraping method

that uses Java Regular Expression and Pattern

Matching API [6] and requires knowing only

Regular expressions to modify the web scraping

structure. E.g. 3 parts of the search result (shown

in 3 different lines)

“
Yahoo!

Welcome to Yahoo!, the world's most visited …”

can be extracted using

(?:) match URL

(.*?)(?:?) match Title

(.*?)(?:
<small><i>?) match Description

Expressions in bold define the groups of string that

we scrape from the HTML page.

 Multithreading. Multithreading enables parallel

request and retrieval of results from the parent

search engines. Experiments have shown that

parallel searches perform better than sequential

searches [9].

 Query refinement method. Most search engines

use tools like WordNet [10] to help them perform

query refinements. With the flexible web scraping

method, Buddy scrapes query refinements and
spelling suggestions from other search engines, as

defined in configuration files. Hence, it is

lightweight and useable on low-cost platforms.

 Merging of results. The simplest way of

aggregation is to return all the results in one page

without any post processing and re-ranking. This

can lead to biased or overlapping results. In

contrast, positional methods are computationally

more efficient [11] and more precise. We use a

positional method of ranking the merged results.

 Web-based interface. As the system was

implemented using Java, Java Server Pages (JSP)

was used to interact with the user and server. The

GUI of the system aims to be intuitive and user-

friendly. As the target users of the system are

students and teachers, it is appropriate that the

system is able to connect to subject-specific

directories. Search engines are classified according

to categories, namely Science, Math, Geography,

History, Arts and General Search. E.g. Science

category will include science-related search
engines and directories – Scirus, Google’s Science

Directory and Yahoo’s Science Directory. This

will help searchers focus their search in a specific

subject.

4. System Architecture

Buddy is made up of 5 components (see Figure 2):

Web User Interface

Records Getter

HTML Getter

Results

Aggregator

Engine Builder

Multiple remote search

engines’ databases

Figure 2 (Top) System Architecture; (Bottom)
Interaction among Components

1. Web User Interface – interacts with searchers

 5

2. Records Getter – processes queries and

parses/scrapes HTML pages; returns a vector of

Records (results)

3. HTML Getter – retrieves HTML pages with the

format query URL string; multithreading is used to
speed up page retrieval.

4. Engine Builder – informs Records Getter to

perform query processing and HTML parsing of

different query/results format of different source

search engines.

5. Results aggregator – merges, removes duplicates

and re-ranks search records. Borda Positioning

Rule was used to merge and re-rank the results, as

it is relatively inexpensive, computationally

efficient and has desirable properties such as
anonymity, neutrality and consistency [11][12].

5. Experimental Results

To test the performance of Buddy, 37 queries3 were

selected to obtain statistical results. These 37 search

terms have been used previously in other studies [11]

[12].

Experiments were done on a system with AMD

Athlon XP 1600+ 1.4Ghz, 768 MB of RAM and a

2000 kbps Internet connection.

Two tests were conducted:

1. The first test connected the system to 6 search

engines (Google, Yahoo, MSN Search,

AllTheWeb, AltaVista, and Ask.com) individually

to obtain 200 normal search results per query.

2. The second test meta-searched into 3 search

engines (Google, Yahoo, and MSN Search)

concurrently to return aggregated search results

(only top 200 from each search engines is used;

we would expect about 600 results per query). At

the same time, we also searched for query
refinements from Ask.com and Yahoo, and

spelling suggestions from Dictionary.com.

The reader should note that we did not want to

compare the performance of the various rank

3
 affirmative action, alcoholism, amusement parks, architecture,

bicycling, blues, cheese, citrus groves, classical guitar, computer

vision, cruises, Death Valley, field hockey, gardening, graphic

design, Gulf war, HIV, java, Lipari, lyme disease, mutual funds,

National parks, parallel architecture, Penelope Fitzgerald, recycling

cans, rock climbing, San Francisco, Shakespeare, stamp collecting,

sushi, table tennis, telecommuting, Thailand tourism, vintage cars,

volcano, zen buddhism, and Zener.

aggregation methods, nor compare performance with

other meta-search engines. Instead, we wanted to

evaluate the time taken to parse the HTML pages and

aggregate the results against the total time taken to

complete the task. This is to evaluate the amount of

overhead (in terms of processing time) used for parsing
and aggregating results. The tests were also to show

that the system was running properly.

5.1. Test-1 Analysis

In this test, Buddy was used to search into 6 search

engines individually to obtain 200 results per search

engine per query.

Parsing Overhead. We are able to evaluate the

parsing overhead incurred in this test. Parsing overhead

is the amount of processing time required to parse

HTML pages to create Vectors of Records.

Figure 3 Time taken for Buddy to search
sequentially into each search engine

From Figure 8, Buddy clocked an average of 2.5

seconds while searching into Google for 200 results

per query. Ask.com took the longest time, with the

bulk of the time spent on retrieving the HTML Page.

We observed that on the average, only 7.24% of the

processing time is involved in parsing. Bulk of the time

is being used to retrieve the HTML pages instead.

Limitation factor. We conclude that the performance
of Buddy is limited by the connection speed to the

search engines. We will expect the speed of combined

search to be limited by the speed of slowest search

engine selected. For instance, Searcher A selects

Google and Ask.com. Searcher B selects Google and

MSN Search. The system will take a longer time to

obtain results for Searcher A because page retrieval

from Ask.com is relatively the slowest (Figure 3).

Overlapping records. It is interesting to note that

there are actually a few (less than 1%) duplicates

 6

already present within the results of a search engine

(Table 1). E.g. out of the 7400 records from Google,

the system has removed 11 duplicates.

Table 1 Breakdown of records obtained by
Buddy from each search engine (total 37
queries)

5.2. Test-2 Analysis

In Test Two, for every query, Buddy is used to

perform the task of searching 3 search engines to

obtain 600 results, to obtain query refinements and

spelling suggestions. The final results are obtained by

merging 200 results from each of the 3 search engines.

We will expect some duplicated results to be removed.

Here, we evaluated the overhead incurred for result

aggregation. The top 3 fastest search engines from Test

One (Google, Yahoo and MSN Search) were selected

to participate in this test.

Results Aggregation Overhead and Performance.

From Figure 4 (top), we can see that the average

overhead cause by result aggregation is only 0.32%.

The system has, on average, removed 21.78% of the

total results that are overlapping. Also from Figure 4

(bottom), we can see that about one-fifth of the results

are duplicates. For each query, the system takes about

an average of 7.86 seconds to gather about 600 results

from the 3 search engines, aggregates them and

provides, on average, 90 query refinements. The

performance is better than Helios [9], which took 12.4

seconds to retrieve 600 results.
In summary, the average time for Buddy to retrieve,

parse and merge 600 results from Google, Yahoo and

MSN Search is 7.8 seconds per query. This timing

includes the retrieving and parsing of query refinement

and spelling suggestions from Ask.com and

Dictionary.com.

The performance of the system is greatly affected

by the available bandwidth. Parsing and result

aggregation overhead is not significant compared to

that of HTML retrieving.

Breakdown of Records obtained per query

0

100

200

300

400

500

600

700

a
ff

ir
m

a
ti
v
e

 a
c
ti
o

n

a
lc

o
h

o
lis

m

a
m

u
s
e

m
e

n
t

p
a

rk
s

a
rc

h
it
e

c
tu

re

b
ic

y
c
lin

g

b
lu

e
s

c
h

e
e

s
e

c
it
ru

s
 g

ro
v
e

s

c
la

s
s
ic

a
l
g

u
it
a

r

c
o

m
p

u
te

r
v
is

io
n

c
ru

is
e

s

D
e

a
th

 V
a

lle
y

fi
e

ld
 h

o
c
k
e

y

g
a

rd
e

n
in

g

g
ra

p
h

ic
 d

e
s
ig

n

G
u

lf
 w

a
r

H
IV

ja
v
a

L
ip

a
ri

ly
m

e
 d

is
e
a

s
e

m
u

tu
a

l
fu

n
d

s

N
a

ti
o

n
a

l
p

a
rk

s

p
a

ra
lle

l
a

rc
h

it
e

c
tu

re

P
e

n
e

lo
p

e
 F

it
z
g

e
ra

ld

re
c
y
c
lin

g
 c

a
n

s

ro
c
k
 c

lim
b

in
g

S
a

n
 F

ra
n

c
is

c
o

S
h

a
k
e

s
p

e
a

re

s
ta

m
p

 c
o

lle
c
ti
n

g

s
u

s
h

i

ta
b

le
 t

e
n

n
is

te
le

c
o

m
m

u
ti
n

g

T
h

a
ila

n
d

 t
o

u
ri

s
m

v
in

ta
g

e
 c

a
rs

v
o

lc
a

n
o

z
e

n
 b

u
d

d
h

is
m

Z
e

n
e

r

Search terms

N
u

m
b

e
r

o
f

re
c
o

rd
s

No. of duplicates

No. of unique records

Figure 4 (Top) Statistics for Buddy to
metasearch Google, Yahoo and MSN Search
(200 results per search engine); (Bottom)
Breakdown of records obtained per query

6. Conclusions and Future Work

Currently, Buddy can already connect and extract

data from

1. 9 search engines (Google, Yahoo, MSN Search,

AllTheWeb, AltaVista, Ask.com, Scirus, AOL and

Lycos).

 7

2. 15 Directories (Science, Math, Arts, History and

Geography Directories) from Google, Yahoo and

Open Directory Project.

3. Non-search engine sites such as Dictionary.com.

Web scraping has been an important method in the
data extraction module of this system. It is an ad-hoc

method that does not require us to learn extra APIs of

the databases we want to connect to. It has enabled the

system to extract data from virtually any free search

engines that return results in HTML format.

It is interesting to note that the project has not

involved external open source tools like XQuery or

WordNet. The whole project has been done using

standard Java APIs. This shows the text processing

power of Java language. Web scraping can be

conveniently done using Java’s Regular Expression

and Patten Matching.
Declarative approach enables us to easily change

the web scraping structure just by changing the regular

expressions. We can also change the properties of the

source search engines by editing the parameters in their

descriptor script files. This does not require much

programming knowledge to maintain the system.

This proposed meta-search system will be useful to

searchers, especially to the target users in the education

domain. The system is suitable for searchers who 1)

want to have a wider range of answers to their queries

from multiple sources 2) dread to see sponsored links
3) need help in query refinements and spelling

suggestions 4) want to share their results with others or

save their results for future reference. Thus, the system

is certainly a suitable learning tool for students and

teachers, and should find applicability in schools.

The system retrieves results straight from sources,

without adding sponsored links to distract users. The

system lets searchers have wider range of answers to

their queries from multiple sources. The system is

useful to novice searchers who need help in query

refinements and spelling suggestions. The system also

allows searchers to share their results with others or
save their results for future reference. This system is

certainly a suitable tool for learning for the students

and teachers. Above all, it serves the primary objective

of being a meta-search engine with increased

dependability and maintainability.

Several problems were encountered and lessons

learnt in the development of Buddy. The performance

of the initial prototype was not desirable. This was

because of the lack of parallelism being employed in

the implementation. Retrieving HTML pages is usually

the bottleneck of the whole search process because it
takes a relatively long time to retrieve the pages.

Subsequently, multithreading was used to retrieve the

pages from the search engines, and the performance of

the system is acceptable now. From the tests conducted

(see Section 5), we can see that performance is greatly

influenced by the amount of bandwidth available. The

processing cost of parsing and result aggregations is

not that high compared to that of retrieving HTML

pages. Performance will be affected if the available
connection speed is low. If we can speed up the HTML

retrieval process by using faster Internet connection,

the system’s performance will improve.

Future work can include multi-language support,

support for Really Simple Syndication (RSS) format

[13] and classification of search results into appropriate

categories.

References

[1] J. Barker, “The Best Search Engines – UC Berkeley -
Teaching Library Internet Workshops”, Finding Information
on the Internet: A Tutorial, UC Berkeley, 2006, Accessed 5

Sep 2006 from
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/Se
archEngines.html

[2] G.R. Notess, “Little overlap despite database growth!”,
Search Engine Statistics: Database Overlap, Search Engine
Showdown, Accessed 5 Sep 2006 from
http://www.searchengineshowdown.com/statistics/overlap.sh

tml

[3] C. Sherman, “Metacrawlers and Metasearch Engines”,
SearchEngineWatch, 23 Mar 2005, Accessed 4 Sep 2006
from
http://searchenginewatch.com/showPage.html?page=215624
1

[4] PCWorld, “The Straight Story on Search Engines”,

PCWorld Computing Center, About.com, 2006, Accessed 5
Sep 2006 from
http://pcworld.about.com/magazine/2007p115id97431.htm

[5] ceperez, “HTML Screen Scraping Tools Written in
Java”, Manageability – Java Open Source, Accessed 5 Sep
2006 from http://www.manageability.org/blog/stuff/screen-
scraping-tools-written-in-java/view

[6] Sun Microsystems, “Pattern”, Sun Java2SEv1.4.2, 2003,
Accessed 5 Sep 2006 from
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern
.html

[7] N.K. Agarwal and D.C.C. Poo, “Meeting knowledge
management challenges through effective search”, Int. J.

Business Information Systems, 1(3), 2006, pp.292-309.

[8] B. Goetz, “Java theory and practice: Screen-scraping
with Xquery”, Java technology / XML, IBM
DeveloperWorks, Accessed 4 Sep 2006 from http://www-
128.ibm.com/developerworks/xml/library/j-jtp03225.html

http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/SearchEngines.html
http://www.lib.berkeley.edu/TeachingLib/Guides/Internet/SearchEngines.html
http://www.searchengineshowdown.com/statistics/overlap.shtml
http://www.searchengineshowdown.com/statistics/overlap.shtml
http://searchenginewatch.com/showPage.html?page=2156241
http://searchenginewatch.com/showPage.html?page=2156241
http://pcworld.about.com/magazine/2007p115id97431.htm
http://www.manageability.org/blog/stuff/screen-scraping-tools-written-in-java/view
http://www.manageability.org/blog/stuff/screen-scraping-tools-written-in-java/view
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://www-128.ibm.com/developerworks/xml/library/j-jtp03225.html
http://www-128.ibm.com/developerworks/xml/library/j-jtp03225.html

 8

[9] A. Gulli and A. Signorini, “Building an open source
meta-search engine”, Special interest tracks and posters of
14th WWW Conf., May 10-14, 2005, Chiba, Japan.

[10] Princeton University, WordNet: a lexical database for

the English language, Cognitive Science Laboratory,
Accessed 3 Sep 2006 from http://wordnet.princeton.edu/

[11] M.S. Mahabhashyam and P. Singitham, “Tadpole: A
Meta search engine Evaluation of Meta Search ranking
strategies”, CS276A Project, Stanford University, Fall 2002,
Accessed 7 Sep 2006 from
http://www.stanford.edu/class/cs276a/projects/reports/mmah

athi-pavan.doc

[12] C. Dwork, R. Kumar, M. Noar and D. Sivakumar,
“Rank aggregation methods for the web” In Proceedings of
the 10th International Conf. on the World Wide Web
(WWW10), May 1-5, 2001, Hong Kong, ACM Press and
Addison Wesley, pp.613-622.

[13] D. Winer, RSS 2.0 Specification, Berkman Center for
Internet & Society, Harvard Law School, Accessed 4 Sep
2006 from http://blogs.law.harvard.edu/tech/rss

http://wordnet.princeton.edu/
http://www.stanford.edu/class/cs276a/projects/reports/mmahathi-pavan.doc
http://www.stanford.edu/class/cs276a/projects/reports/mmahathi-pavan.doc
http://blogs.law.harvard.edu/tech/rss

